The effects of college population on rent and home-owning cost across US Metro Areas
Bryan Do, Balazs Zelity Wesleyan University, Department of Economics, QAC Summer Apprenticeship 2021

Method

- Calculates actual monthly expense of a homeowner by summing the monthly mortgage payment (principal + interest) assuming 20% down payment, monthly property tax, and 1% for maintenance expenses.
- Calculates the rent/own difference (rent - own cost) as a percent of the average rent/own cost to make Metro Areas with varying rent/own cost average comparable.
- Runs fixed effects regressions of rent/own difference, rent, and own cost on percent of college population with state and time fixed effects.
- Include control variables for income, population's demographic, and measures of units per building in the regression models.

Figure 5. Scatter plot.

Discussion

Based on the regression table in Figure 4., we can conclude that college population has a statistically significant negative effect on rent/own difference even when we added controls for income demographic, and housing units per structure. This means it is relatively cheaper to rent than to pay off mortgage monthly. After adding control variables, the model indicates that college population has a significant positive effect on rent but an even larger positive effect on home-owning cost. This result is consistent with the expectation that a higher college population would both increases demand for rentals and correlates with higher home value.

	Dependent variable.					
	ROD1		Rent		OwnCost1	
	(1)	(2)	(3)	(4)	(5)	(6)
CollegePopPct	$\begin{aligned} & -0.796^{* * *} \\ & (0.132) \end{aligned}$	$\begin{gathered} -1.400^{* * *} \\ (0.106) \end{gathered}$	$\begin{gathered} -18.939^{\cdots} \\ (3.009) \end{gathered}$	$\underset{\substack{6.145^{*}}}{ }$	$\begin{aligned} & -1.938 \\ & (6.033) \end{aligned}$	$\begin{gathered} 71.956^{* * *} \\ (4.033) \end{gathered}$
lincome		$\begin{gathered} -62.233^{* * *} \\ (0.944) \end{gathered}$		$\begin{aligned} & 1,520.236 \cdots \\ & (17.881) \end{aligned}$		$\begin{gathered} 3,295.702^{* * *} \\ (35.822) \end{gathered}$
- Age 20-34 Pct		$\underset{\substack{-3.732 \cdots \\(0.127)}}{\substack{0}}$		$\begin{aligned} & -54.489^{\cdots \cdots} \\ & (2.401) \end{aligned}$		$\begin{gathered} 1.692 \\ (4.809) \end{gathered}$
- Age 35-49 Pct		$\begin{gathered} -5.728^{-\cdots} \\ (0.173) \end{gathered}$		$\begin{gathered} -65.122^{+\cdots} \\ (3.270) \end{gathered}$		$\underset{(6.551)}{67.530+1}$
'Age 50-64 Pct		$\underset{(0.118)}{-0.634^{*-}}$		$\begin{gathered} -23.669^{+\cdots} \\ (2.243) \end{gathered}$		$\underset{(4.493)}{48.174+\cdots}$
$\underset{\mathrm{Pct}^{\text {Age }}}{\text { Age Above }} 65$		$\begin{gathered} -3.510^{\cdots} \\ (0.088) \end{gathered}$		$\begin{gathered} -16.490^{\cdots \cdots} \\ (1.673) \end{gathered}$		$\underset{(35.351)}{55.597^{+\cdots}}$
${ }_{\text {Pct }}{ }^{1}$ Unit Structure		$\begin{aligned} & -0.106^{*} \\ & (0.051) \end{aligned}$		$\begin{gathered} -21.816^{\cdots \cdots} \\ (0.963) \end{gathered}$		$\begin{gathered} -43.845 \cdots \cdots \\ (1.929) \end{gathered}$
2.9 Units Structure Pct		$\begin{gathered} -0.085 \\ (0.052) \end{gathered}$		$\begin{aligned} & -.75^{*} \\ & (0.993) \end{aligned}$		$\begin{aligned} & -1.829 \\ & (1.988) \end{aligned}$
-Over 9 Units Structure Pct		$\begin{aligned} & 0.308^{*} \\ & (0.045) \end{aligned}$		$\begin{gathered} 17.741^{\cdots \cdots} \\ (0.846) \end{gathered}$		$\begin{gathered} -11.707^{* *} \\ (1.695) \end{gathered}$
Observations	7,547	7.547	7,547	7,547	7,547	7,547
R^{2}	0.731	0.923	0.545	0.910	0.552	0.911
Adjusted R ${ }^{2}$	0.727	0.922	0.538	0.909	0.545	0.910
Residual Std. Error	${ }_{7435)}^{12.248(\mathrm{df}=}$	${ }_{7427}^{6.540}(\mathrm{df}=$	$\underset{7435)}{278.323(\mathrm{df}=}$	$\begin{gathered} 23.922(\mathrm{dff}= \\ 7427) \end{gathered}$	$\begin{aligned} & 7.987 \text { (dat } \\ & 74355 \end{aligned}$	$\begin{gathered} 248.258(\mathrm{df}= \\ 7427) \end{gathered}$

igure 4. Fixed Effect Regression Linear Mod

This model shows the fixed effects regression results of regressing rent/own difference,
rent, and own cost on college population percentage with and without controls
Data Source

1. Zillow research data
2. FRED Economic data
3. Tax Foundation
4. ACS-1 year Estimate, US Census Bureau
