

The Rotational Spectra of Dibromodifluoromethane

Dibromodifluoromethane (CBr2F2), a molecule with a potential four-fold internal rotor, has been studied by the Novick group using high resolution Fourier-transform microwave (FTMW) spectroscopy. This project is a continuation of existing research Abstract of other molecules involving hydrogen and halogen sources, including H₂ MOF and CF₃I. The research was designed to prove that Dibromodifluoromethane could serve as the bromine source for Silver bromide (H2AgBr) but examining the rotational transitions of its Carbon-12 parent isotopes and Carbon-13 isotopes has produced an interesting study of the Fluorine monomer.

Introduction This project was created to address a need for a reliable Bromine source for studies of Ar-AgBr and H_2 AgBr. Earlier studies of H_2 in H_2 MOF and Cl_2 as the chlorine source in several experiments demonstrated deficiencies in H₂ and Cl₂. However, success using CF_3I to generate AgI prompted us to consider using Dibromo difluoromethane (CBr_2F_2) as our bromine source. (Fig. 1)

Samples were prepared Experimental of <1% CBr₂F₂ in tanks of high purity, dry Argon, which was used as a backing gas in supersonic expansion into the vacuum chambers of our spectrometer, a Balle-Flygare cavity Fourier transform microwave (FTMW) spectrometer. (Fig. 2) 0.2 ml of CBr_2F_2 was placed in the gas line behind the nozzle and over 300 transition frequencies of the parent isotopes (Carbon-12 isotopes: 79_79, 79_81, 81_81) were observed using this setup. We analyzed the recorded frequencies using programs such as **ascp_l**, SPFIT, and SPCAT to fit the rotational spectra and assign the torsional state rotational transitions. (Fig. 3)

Figure 2. Balle-Flygare cavity Fourier transform microwave spectrometer (Enrico)

References

[1] J. Hoeft, F. J. Lovas, E. Tiemann, and T. Torring, *Z. Naturforsch*. **25a**, 35 (1970). [2] K. P. R. Nair and J. Hoeft. *Phys. Rev. A* **35**, 668, 1987.

[3] L.C. Krisher and W. G. Norris, J. Chem. Phys. **44**, 974, 1966.

	⁷⁹ Br- ⁷⁹
D _{aa} (kHz)	-0.41
D _{bb} (kHz)	0.21
D _{cc} (kHz)	0.21

Christopher Falls¹, Joshua Signore¹, Stewart E. Novick¹, Daniel Obenchain², Stephen Cooke³ ¹Wesleyan University, ²Georg-August-Universitat Gottingen, ³Purchase College

-0.62	optimized structur reported g-factors
0.72	

-22.95

Discussion In keeping with theory used in earlier studies involving Halogen sources, we approached CBr_2F_2 as a potential source of AgBr in ablative expansion. By using this molecule, the Novick Group hoped to avoid corrosive reactions in the lab's flow controllers produced by the mixing of gases during the experiment. *Ab initio* calculations were carried out to determine the bond angles of CBr_2F_2 and estimate the barrier to internal rotation. We have fits of the ${}^{12}C^{79}Br_2F_2$, ${}^{12}C^{81}Br_2F_2$, and ¹²C⁷⁹Br⁸¹BrF₂ with over 100 lines in each fit to better than 7 kHz rms. (Fig. 4, Fig. 5) The structure of dibromo -difluoromethane is such that only the four bond lengths and bond angles of the bromine carbon bonds and isotopic information of ¹²C and ¹³C give more data than is usually necessary to evaluate the molecule. However, Fluorine is still present in additional splitting in some of the higher-intensity Carbon isotope transitions.

While our initial experiment Conclusion determined that CBr_2F_2 was not a good alternate source of bromine to make AgBr, our work has produced rather interesting results about the monomer. Via examination of the () we confirmed that, out of all the predicted spin-spin and spinrotation interactions, only spin-spin of ¹⁹F-¹⁹F has the correct magnitude to cause this splitting. (Fig. 6) The Novick Lab does not usually work with large enough magnetic fields to observe such behavior and will continue to measure the Carbon-13 isotopologues to expand our results.

79_81 (below) isotopes of CBr2F2 in **ascp_l**, a fitting program (colors assigned to each isotope).

