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Abstract Examples Numerical Calculations

Most sensors operate on a linear response principle (LRP) which
implies a fundamental bound on the dynamic range of a sensor:
the ratio between the maximum and minimum perturbations a
sensor can measure. To overcome this limit a nonlinear sensing
scheme is required. We have recently identified that such sensors
can be created based on physical sensing platforms which operate
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at the vicinity of Wigner’s cusp anomalies (WCAs). These are 0.2 &
square-root singularities of the differential scattering cross- | | | | | . 07

. While Wigner’s cusps were first discussed in a framework of nuclear |
section around the energy threshold of a newly opened channel. It , _ _ _ Al 1 Angge

st itself ] € frameworks includine nuclear physics, they appear in many other settings. For example, figure a 81 Variagigy 0 Matiop, , ,

can r.nanl estl se- ih-a ranse o _W _ theiudi g _ u displays a quantum step potential of height U and incident energy E, the
reactions, scattering of a quantum particle in the proximity of a cusp occurs in reflectance/transmittance in the vicinity of E > U. Another
step potential, and reflectance of a monochromatic wave from the example, (figure b) is a dielectric interface between two media with = 155m
intersection of two dielectric media (the first having a greater different refractive idexies ny > nj, where the WCA occurs once the 92475 deg
refractive index than the second) about the critical angle. The angle of incidence is lower than the critical angle. In photonics, WCAs
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also occur at the interface between two coupled resonator optical

WCAs also can be implemented in a multimode system, where _ e .
waveguides (CROW), with different central frequencies.

each mode has a threshold associated with a specific type of
perturbations allowing the independent and simultaneous

detection of a large number of various perturbations. Our effort M U Itl mOd e SySte MS

aims to achieve a multi-faceted sensor-platform with extreme

sensitivity and large dynamic range, which is capable of The ability to connect multiple channels (waveguides) allows for the

creation of a sensor that is hyper-sensitive to multiple independent

observables at the same time. In order to investigate a system with multiple

- - unique cusps, we studied a multimode setting. Specifically, we utilized a . . o .
otivation . . . square root with variations to incident angle and refractive index. We
double step potential. In this setup we can sense two independent B . ” .
also see a “washing out” of the cusp as the beam waist decreases. The

observables at once: transmittance from the first to the second medium, and L . .
. . . . cusps are less distinct for narrower beam waists because beam waist
transmittance from the first to the third medium. 21
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The data above is a numerical simulation of a gaussian beam incident
on an interface between two dielectric media with refractive indices
n,; and n,. We observe that differential reflectance behaves as a
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- Perturbation, P (a.u.) G AT T SA 0 X p, — port 1, point of wave excitation
dynamic range. The plot on the ’ unlike the single step potential. .

p, — port 2

right displays the differences in
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The plot below is the result of the configuration with the
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multimode waveguide that we used osf™" )"0, ie.
Af = 1.6 deg

£ e [ s T 0.9 o é
Iy £ 21 TZlE following parameters: wy, ;= 40 um, A= 1550 nm, n; = V12,
[—A]O — < @Wo T 1 £ . ) ) c 08 08 313 bottom leg n,= 1.45, which gave the critical angle .= 24.75 deg.
g Wo — & | 0.7 - Angle Variation vs Differential Reflectance
- . . .y 0.7
> 0.6 0.6 2 The image above displays the silicon == Simulation Data

Prominent examples of platforms
that allow sublinear sensing are
systems operating near exceptional
points (EPs). Such systems can be
described with a Non-Hermitian g4

intensity

to conduct our simulations. In this Z
image the waveguide is positioned
so that the wave is incident at the
critical angle. We constructed the
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Hamiltonian shown above with pair 4k K 0.50, u, 150, s, my sy e sy oy vy su, su, aos,  Simulationinaway thatallowsusto £
of eigenfrequencies E.. If g =a y | h f‘““‘de“tE“ergY’EU) et | ‘;“‘de“fﬁnel"gy’ﬁ(') » rotate the top leg so that we can
. : . - 1 1 0.1
eigenfrequencies and eigenvectors 0.2} In the case of E < U, we see total reflection, just as in the single sze[l)] potentia Per.form calculations for. Varl.ous
coalesce, forming an EP. In such a I case. When U, < E < U; the reflectance cusp is given by R = 1 — - ® /g, and incident angles. The wave is excited 2 1 o 1 2 3 1 s
platform,  sensitivity of ) Eh 7 N 3 at port 1 and is reflected off the Angle Variation, A0 = 0. - 0 (deg)
eigenfrequencies splitting >4 erturbation” 10 the transmittance cusp is given by Tpy = == Veand e = U; + 6, § «1. interface where the waveguide meets the surrounding medium. We
Aw = E, —E_ with respect to erturbation, € When E > Uj; the reflectance cusp is given by then measure the reflected wave at port 2. Our numerical calculations
perturbation e from the EP - Uz - 4U,\Us /s show that the cusp in differential reflectance becomes significantly
demonstrates 1/+/€ behavior. It was (JUs +Us =05)"  (JUs+JU; = 05)" “washed out” .for beam waists less than approximately 100. pm.
recently shown [1] that the error in 1w, o Allan Deviation ) The transmittance cusps are given by However, we still observe the prevalence of the square root behavior in
measured frequency splitting o, | T Eﬂi 2 _ 4.[U3\/Us — U, 8,/Us/Us — U, ~ our simulations with smaller beam waists.
: e : Tk 21 — -
increases at the vicinity of EP. This o okt VT +T5=0,) (JUs+T5=0;)
error is a consequence of quantum . 4,/Us, /s .
. . . == &
noise effects. whlch result in ange (U T T,) § COn CI usion
emission linewidth  broadening, v In this case € = Uz + 6, § «<1. \x ke
which leads to increase in g, . It Cog&\‘”"
appears that atlthe Vi}clinity of EP a,,, @  WCAs provide square-root nonlinear sensitivity
i‘ﬁcrease_st_e’_(fay;ﬁt efsamfhrate s oy 4 e In contrast to EP sensors, WCA sensors measure the
e sensitivity y . Therefore, the error . = . . . .
o1 oP ol = 2 = - 2
© the measurement of observable o 1 w1(ky) = 2t;Cos(kq) : differential transmittance, not the frequer}cy split |
G = TAW L dho can and i 0. (1) ~ qr 05 @ Y XY X 0 ===== 01  WCA sensors do not suffer from excessive quantum noise
€  , CuiEEERAAE BAE ARAIE A e st 1) ¥V v v w \vii(\_~~ 09— pmmm- . . . . .
- denendent of th NI, d . ;j effects associated with a broadening of the emission peaks
independent of the proximity to the 3. .
Ep lPesulting 1o Iijmpmvefnent of 0 B, B 1 ) 3 near EP, which masks the sensitivity enhancement
pr’ecision at the vicinity of the EP. Ho = (gz gz 54) * With WCA one can create multimode systems, which allow
X A > @ for enhanced sensing of multiple independent observables
22 ez )  WCA sensing allows “directional” sensing with S-bend cusps
o, B2 * . .
..., § B 4, * The sharpness of the WCA cusp is typically fundamentall
R We also studied transmission in a system ,,.> Frequency vs Reflectance o p _ p _ yP y y
consisting of three CROW arrays using the limited by the divergence of the incident beam
wca tight binding model. In this setup we are also * Increasing the beam waist reduces the range where the WCA
//'\\ . able to sense multiple different observables at cusp is “washed out” and sensitivity is reduced
- AN once. At the same time, in this system we see « Now we are working on optimization of the waveguide
. multiple double-sided cusps, which open ¢ del which 1d all ¢ : tallv d trat
Perturbation, £ ' —— - T— many possibilities for sensing. The double- % modae W_ ichwol a OW US 1o experlmer.l _a_ y demonstrate
In order to overcome these potential limitations of EP-based sublinear sided cusp centered at w= 0.1 Hz is an S-bend the on-chip sensor with an enhanced sensitivity
sensing we propose another mechanism, Wigner’'s Cusp Anomalies cusp and can be especially useful for sensing. _ o
(WCAs). These cusps are square root singularities of the differential This cusp provides a way to sense hyper- LR, K(?nonchuk, l Felrllberg,, J- Knee, T KOt_tOS' En.hanced AVIOHIC
scattering cross-section around the energy threshold of a newly sensitively in both the positive and negative o bbbl bl sensing based on Wigner’s cusp anomalies. Scz.Aav. 7,
opened channel (see figure above, where channel n experiences a direction. Such a feature would be best suited Frequency,  (H2) eabg8118 (2021).
close-to-open transition ). Unlike at the EPs, these cusps are not for measurables that may be positive or "va}:tehptlsg?(l)’l(l’(‘)’jvii;h;a“rzsm“gtzlf;h;;ﬁ“gg;it“’; 2. Lai, YH., Lu, YK., Suh, MG. et al Observation of the exceptional-
impacted by quantum noise effects. negative such as acceleration, rotation, etc. Ba=0,t1=-1,t;=-1, t5= -1, Up= 2, U3=-1.9 point-enhanced Sagnac effect. Nature 576, 65-69 (2019).




