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Introduction
     By abstracting systems into networks, one 

can use general mathematical tools to  

characterize and compare different 

connectivity patterns.

     Additionally, the application of geometric 

tools to the analysis, classification and 

comparison of networks allows new 

understandings to be made.

     An efficient embedding of a network in a 

metric space provides natural geometrical 

interpretations of topological features. In 

particular, many topological properties 

common in real-world networks emerge as 

natural reflections of the basic properties of 

an underlying geometry.

     In this proposal we open a new direction in 

the application of geometrical tools to the 

study of urban networks by building 

connections between road network flows and 

Riemannian geometry.

     By combining geometric tools with 

network analysis on urban road maps, we 

hope to mathematically explain features of 

the roads in cities that millions use every day.

Research Questions
    Why are some routes through cities windy 

and others closer to straight?

    What causes a road to have a high "basin of 

attraction" (routes take a driver far out of 

their way to utilize this road)?

    Can we effectively model road networks in 

two-dimensional space?

    Do certain geometrical features of urban 

road networks lead to congestion?

    Are some cities' geometries more efficient 

at moving drivers throughout the system?

   

Results

Across all of the routes we collected, we 

measured the average distance each 

intersection is from the straight line 

path of the route. This finds the relative 

'attraction' of an intersection as a higher 

average distance means Google Maps 

pulled the driver out of their direct path 

to utilize that intersection. Some of the 

nodes with the highest attraction are 

highways and major roads.

We also collected data on 

the angles of all turns 

made in routes. We found 

that Google Maps (green) 

was likely to have routes 

with more turning as 

compared to the shortest 

path algorithm (violet).

Google Maps distances (in green) and 

the distances of the shortest path (in 

violet) are very similar in short trips, 

but as trips become longer, Google 

Maps rapidly outpaces the shortest 

path algorithm in distance, showing 

that longer trips tend to violate 

standard geometry more than short 

trips.

In addition to the average distance 

shown to the left, we also looked at the 

sum of distances. This results in data 

that is spread much farther apart, as 

some nodes like those on major highways 

both have more routes utilize them and 

also tend to bring you further out of your 

way. This image clearly shows just how 

important those major roads are to 

Google Maps in Manhattan.

Methodology
We purchased fastest routes data from Google Maps using the directions API and developed an algorithm to turn a sequence of network locations into a path of consecutive nodes in the network. In particular, the directions API takes a starting 

and ending location in a city and returns a sequence of (latitude, longitude) coordinates associated with each step in the directions. We obtained data on the fastest way to get from a single source node (i.e. street junction) in Manhattan to every 

other target node in Manhattan. We sampled around 15 sources at one single time (weekday at noon) and 1 source throughout an entire day (8am, 12pm, 4pm, 12am).  With this, we analyzed the length of Google Maps' fastest paths and compared 

the results with shortest paths (computed with Dijkstra's shortest path algorithm). We also analyzed information on the angles of turns in the Google Maps routes using two algorithms, the first using the angle between the vector connecting the 

source and target nodes and the vector connecting each pair of consecutive nodes in the path, which measures the extent to which fastest routes go "against the direction" of the Euclidean geodesic from the starting to the ending node, and the 

second being a standard calculation of the angle in degrees of each turn the route makes at an interesection. Finally, we analyzed the distance each node in a route is from the straight line connecting the source node to the end node. All of the 

results above come from the data we gathered using these methods.
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When looking at the average 

angles of Google Maps routes 

(green) compared with those of 

the shortest path (violet), we once 

again see them follow similar 

trends in shorter trips but 

separating as distance increases. 

We can see that the shortest path 

tends to have less turns or 

smaller turns than Google Maps. 

Interestingly, longer trips in 

general tend to be straighter, 

likely because the route spends a 

considerable amount of time 

moving straight.
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