Effective Geometry of Urban Travel Patterns

Presented by Iain McLaren

Faculty Advisor: Professor Saray Shai, Computer Science

Introduction

© By abstracting systems into networks, one can use general mathematical tools to characterize and compare different connectivity patterns.
\triangle Additionally, the application of geometric tools to the analysis, classification and comparison of networks allows new understandings to be made. \triangle An efficient embedding of a network in a metric space provides natural geometrical interpretations of topological features. In particular, many topological properties common in real-world networks emerge as natural reflections of the basic properties of an underlying geometry. Δ In this proposal we open a new direction in the application of geometrical tools to the study of urban networks by building connections between road network flows and Riemannian geometry.
\triangle By combining geometric tools with network analysis on urban road maps, we hope to mathematically explain features of the roads in cities that millions use every day.

Research Questions

Why are some routes through cities windy and others closer to straight? D What causes a road to have a high "basin of attraction" (routes take a driver far out of their way to utilize this road)? Dan we effectively model road networks in two-dimensional space?
Do certain geometrical features of urban road networks lead to congestion? Dare some cities' geometries more efficient at moving drivers throughout the system?

Methodology

 results above come from the data we gathered using these methods.

References

Barthélemy, M., \& Flammini, A. (2008). Modeling Urban Street Patterns. Phys. Rev. Lett., 100, 138702. https://doi.org/10.1103/PhysRevLett.100.138702
Çolak, S., Lima, A. \& González, M. Understanding congested travel in urban areas. Nat Commun 7, 10793 (2016). https://doi.org/10.1038/ncomms10793
Chan, S.H.Y., Donner, R.V. \& Lämmer, S. Urban road networks - spatial networks with universal geometric features?. Eur. Phys. J. B 84, 563-577 (2011). https://doi.org/10.1140/epjb/e2011-10889-3

