
1. Worm, Martin, et al. (2017), “Social Interactions between Live and ARTIFICIAL 
WEAKLY ELECTRIC Fish: ELECTROCOMMUNICATION and Locomotor Behavior 
of Mormyrus RUME Proboscirostris towards a MOBILE DUMMY FISH.” 

2. Arnegard, Matthew E, and Bruce A Carlson. (2005), “Electric Organ Discharge 
Patterns during Group Hunting by a Mormyrid Fish.”

3. Lauer et al. (2021), Multi-animal pose estimation and tracking with DeepLabCut

Thank you to The Baker '64 Collabria Fellowship which has funded my research 
this summer.

Introduction

Methods: Motion Tracking

What are the mechanisms of coordination in social behavior?

How can machine learning algorithms be leveraged to enable the 
investigation of social coordination in Mormyrid weakly electric fish?

Mormyrids are pulse-type weakly electric fish that emit and receive
electric organ discharges (EODs) in order to communicate and
locate objects in their environment. These EODs are pulsed electric
fields. EOD waveforms are stereotyped, but the fish are able to
vary the interval between EODs (inter-pulse-intervals – IPIs). The
IPIs differ depending on social context, and the timing of EODs are
coordinated during behaviors such as mating, hunting, and
aggression.
Much of the past research on Mormyrid social behavior has
examined this coordination within individual and pairs of fish. For
example, Worm et al. (2017) demonstrated that fish coordinate
their pulsing with a dummy fish that emits electrical signals.1
Investigations on the social dynamics of larger groups of fish have
been done by manually identifying EOD fish pairs in recordings. In
2005, Arnegard and Carlson found EOD acceleration and
synchronization during hunting in a wild group of Mormyrids.2

However, the timescale and spatiotemporal resolution that these
researchers could achieve with manual methods do not enable the
investigation of social behavior at a resolution that can be
integrated with studies of the underlying neural mechanisms. Our
research utilizes machine learning algorithms to conquer this
obstacle. This enables us to finally tackle long-standing questions
about how the coordination of communication signals enables
group cohesion in dynamic social environments by leveraging
Mormyrid fish as a model system.

EOD Recording Integration

The behavioral assay that we are developing will be used to investigate the
mechanisms of coordinated communication in social behavior. Specifically,
our assay focuses on the exploration of novel environments and how group
size affects group cohesion and communication during exploration. In this
assay, a tank with eight fish will be split into two compartments with all fish
acclimated to one side. Groups of one, two, and five fish will be moved to
the novel side, consisting of a single shelter. We will observe changes in
time spent in the shelters and time spent exploring the novel environment
across different group sizes. We will measure IPIs to assess overall levels of
communication and movement kinematics to assess exploration. Critically,
as group size increases, we expect to see increased coordination and
cohesion among the fish. This will be quantified using higher-dimensional
metrics.

Recent advances in machine learning provide us with the tools to 
overcome past technical limitations and measure the social behavioral 

ecology of electric fish with high temporal and spatial resolution. From this 
data, we can better understand the coordination of communication signals 
that results when social environments place different demands on group 

interaction in Mormyrid weakly electric fish.
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Discussion

To quantify the results of our behavioral assay, we need to integrate motion
tracking with the recording of EODs. Leo Farber used a multi-channel
electrode array to record EODs and we have integrated the visual and
electrophysiological streams of data (see accompanying poster). We can
calculate the angle of each fish at each moment in time from the data we
acquire with DeepLabCut pose estimation. We can now utilize information
about the angle of each fish to assign individual fish identity to each EOD (by
comparing the fish orientation with the polarity and amplitude of each EOD
recorded across channels of a multi-electrode array).
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Research Question !

DeepLabCut is an open source package used for pose estimation tracking of 
animals.3 A network must be trained for a specific animal, in this case Mormyrid 
fish. Once well-trained, the network will generalize to track the fish in unlabeled 

videos (and across a variety of environmental conditions).

DeepLabCut Development Process
• First, we optimized the video recording setup to enable the acquisition of video

under IR light. This serves two purposes: 1) fish are nocturnal so they are more
comfortable interacting in the dark, 2) sheltering is a significant part of their social
ecology and under IR light, we could make shelters that did not obscure visual
access.

• We extracted a subset of frames from a video and labeled all fish in each
extracted frame with easily determined body parts. We chose body parts to label
to balance identifiability with numerosity.

• To train the network, DeepLabCut splits labeled frames into train and test groups.
The training frames are used for the network to learn how to predict the labels.
The test frames are used to check the accuracy and generalizability of the
network after being trained.

Results !
Network Evaluation

Labeled Video and Tracking Data

Table 1: DeepLabCut network analysis showing error measured in Pixels. Train
error shows the number pixels off DeepLabCut was when labeling frames used in
training. Test error shows the number of pixels off when labeling frames not used
in training. The p-cutoff is the set p-value at which DeepLabCut does not place a
label. The next stage of network evaluation involves a bootstrap procedure in
which we quantify how well the network can generalize.

Figure 1: A sample manually-
labeled frame from a video 

recorded under IR light in the 
behavioral arena. Twenty frames 

were extracted from this ten 
second video of freely swimming 
Mormyrids. Thirteen body parts 
were chosen to be labeled on 

each fish in each frame.

Figure 3: Top: X and Y coordinates of the tail_tip and tail2 positions of a 
single fish (sample data predicted from iteration1 of the trained network). 

Bottom: the angle of the fish over time, calculated from the X/Y data.

Table 2: Example of the data acquired by the analysis of the novel video
(Figure 2) by the trained network. Coordinates created with the labeled video.
Shows the x and y coordinates for each body part on each fish in each frame.

After the initial training, we are working on reiterating the process to acquire more 
video from which to extract more frames to add to the dataset and retrain the network. 

Specifically we are focusing on improving performance on instances where the fish 
cross paths or the environment changes appearance.

Figure 2: Labeled video created 
by the trained network.

Figure 3: Experimental 
design and anticipated 
results. As group size 

increases, we expect the 
coordination of EODs 

between fish to increase 
and the length of the IPIs 

to decrease (EODs are 
closer together).


