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Introduction
In allosteric regulation, the energy landscape of a protein, a
statistical representation of a proteins potential energy, can be
altered to achieve various results. Understanding allostery
provides exciting insight into the possibilities of more
targeted and effective drugs made using allosteric design. To
better understand the shifts in the free energy landscape that
occur as a result of allosteric effectors, we can use vectors,
programmed with magnitude and angle data from simulation
outputs, and couple them with residues. This allows for an
instantaneous visual representation of how a protein reacts to
various allosteric effectors in a simulation. This visualization
allows for continuous refinements in order to create allosteric
effectors that most favorably shift the free energy landscape,
with the eventual goal of engineering allosteric effectors to
reactivate native functionality in proteins. Each vector will be
centered on alpha carbon of a residue, using a polar
coordinate system the vector will represent the net force felt
by its respective residue. This net force on a residue is a
product of its neighboring residues inflicting external forces
upon it.

Figure 1: Example of a Thayer Vector, uses a local polar coordinate system centered
on each residue’s alpha carbon. Pictured with three neighboring residues i,j,k

The feasibility of this approach, in which we capture the free
energy landscape using vectors will be demonstrated using
the p53 tumor suppression protein. Mutations in p53 are
present in nearly 50% of ovarian, esophageal, colorectal, head
and neck, larynx, and lung cancers in humans1. Most of which
are both lethal and undruggable. However, if this method
proves to succeed in providing the missing link between
identifying allosteric control points and which protein
substate will be selected, it will be an integral step toward a
new class of allosteric drugs with targeted control of the
biological processes in any protein.

Methods
To obtain the data necessary to create the vectors, cpptraj dihedral analysis and peptide interaction
analysis was run on three 500ns trajectories of p53; a wild-type trajectory, a y220c mutated trajectory, as
well as a drug-bound trajectory. From this data, sets of vectors for each trajectory is created.

Figure 3: Flowchart Depicting Data Collection
From these vector sets, which contain phi-psi angles as well as a magnitude, the data is converted from
the spherical coordinate system to the cartesian system. Thus, the data is now in the form of x,y,z vector
components, which are combined to create our energy vectors. These vectors are then overlayed onto an
alpha-carbon backbone derived using data from the 1TUP PDB file and plotted using a scatterplot. This
is all done through a Python script that uses package MatPlotLib to take the magnitude and phi-psi
angles and output vector representations of the free energy landscape.

Figure 4: Flowchart Depicting Creation of 3-Dimensional Vector Representations using MatPlotLib
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Results

Future Direction
Using the vector sets, which are each labeled either mutated or wild-type, the goal in the future will be to
use the sets as inputs for an assisted machine learning model to predict the conformational substate of p53
from its free energy landscape. The conformational substate can be predicted using a linear regression
model crafted with the labeled vector data sets.
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Figure 2: Difference in the Molecular Surface near 
Y220 position in p53 WT and p53 Y220C2
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Figure 5: Vector Representations of the 
Free Energy Landscapes of Wild-Type p53, 
Drug-Bound p53, and Y220C Mutated p53. 

Displayed are Residues 218-223 
encompassing the Y220C Mutation


