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- fMRI studies have found that the brain represents categories of visual stimuli 
through distinct patterns of neural activity that are thought to be processed 
repeatedly over time to support learning and memory. 

- Scalp EEG has much higher temporal resolution than fMRI, so we may be able to 
track these stimulus representations in the brain as they evolve over time.

- Some scalp EEG studies have attempted to classify aspects of visual experience 
(Stewart et al., 2014; Murphy et al., 2011; List et al., 2017), but it is not known
how reliably visual stimulus categories can be decoded from scalp EEG data. 

- Furthermore, we asked whether features present in the EEG data collected during
encoding (spectral power at various times and frequencies) can be used to predict 
whether a subject is viewing an object or a scene. 

Introduction Results

- The logistic regression classifier applied to EEG data from participants 1 and 3 
predicted visual stimulus class significantly better than chance and the support 
vector machine classifier applied to EEG data from participants 3 and 5 predicted 
visual stimulus class significantly better than chance. 

- The superior performance of electrode-level models may be due to a larger 
number of features. Additionally, the ROI-level models used 38 electrodes while 
the electrode-level model used 60.

- Further analysis of this data could include examination of classifier weights for 
different features.

- We could also improve the model by collecting more data and training the 
classifier across subjects. We could then use the classifier to decode other time 
periods such as retrieval. 

Results

Conclusions & Future Work
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Methods

= largest average AUC scoreLogistic Regression Classifier

Using FDR analysis, we 
found no statistically 
significant differences in 
spectral power between 
object and scene epochs

Logistic regression and 
support vector machine 
classifier 

Subjects 1, 3, and 5 had statistically 
significant  d’ values (p=0.003, p=0.0002,
p<0.0001).

The majority of participants correctly 
remembered more scenes that objects.
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Time-Frequency Analysis

Spectral power during encoding: objects vs. scenes
Frequency Analysis

Behavioral Analysis

Support Vector Machine Classifier
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Log-transform
ed difference in spectral pow

er (objects-scenes)
The electrode-level SVM classifier predicted class labels significantly better than  chance 
for participant 3 (p<0.001) and participant 5 (p=0.033). 

** P-values were calculated using permutation testing. 

The electrode-level LR classifier predicted class labels significantly better than chance 
for participant 1 (p=0.046) and participant 3 (p=0.002). 

Old/New Word Accuracy

Collection of behavioral and EEG data

Post processing and spectral decomposition of EEG data

Training logistic regression and support vector machine classifiers and 
testing classifier performance

Univariate analysis
Frequency and time-frequency 
information produced by 
spectral decomposition

This research only analyzed EEG data 
collected during  encoding 
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