Wesleyan University

Recurrence Extraction from Lazy Programs

Caroline Churney, Norman Danner

Introduction to Cost Analysis

" Cost: number of operations required
to obtain result of program

" Measure of the efficiency of a
program

A 2
Irime. Quadratic O(n)

Linear O(n)

Constant O(1)
L O(log n;

Input Data
Size

Strict vs. Lazy Programming

" Strict: immediate evaluation

" Lazy: only evaluates if necessary for
the result of the program

What is Clairvoyant Call by Value?

>

Alternative model for lazy evaluation

Utilizes the concept of
nondeterminism

" Interpreter makes choices during
execution depending on the
necessity of bindings for
evaluation of the program

Results in derivation tree with
minimum cost or the “maximally lazy
computation cost”

Goals

Gain intuitions surrounding the
clairvoyant call by value
approach to lazy cost analysis

Extract cost recurrences from
lazy programs

Develop tools that allow us to
track the evaluation and cost of
various programs

Our Work

Coded parser and interpreter to
analyze the cost and operations of

programs

Studied principles of lazy cost
analysis with guidance from Hackett
and Hutton’s work on clairvoyance

Future Work

" Extend Hackett and Hutton’s work in
order to formalize the recurrence
extraction process for lazy programs

" Adapt our interpreter to a lazy
language in order to track operations
and cost of more lazy programs

For more information on Hackett and Hutton's clairvoyant model:
Jennifer Hackett and Graham Hutton. 2019. Call-by-Need Is Clairvoyant
Call-by-Value. Proc. ACM Program. Lang. 3, ICFP, Article 114 (August
2019), 23 pages. https://doi.org/10.1145/3341718

Reverse
fun rev xs = fun app xs ys =
case xs of case xs of
nil => nil nil =>ys
x":xs’ —> x"ixs’ —>
let let
a’=rev xs’ _a=app xs'ys
n=nil n-
b’=x":n X :a
in
app a’ b’

Strict Lazy
rev[1...n] rev[1...n]
=rev[2...n]@[1] =rev[2...n]@[1]
T(n-1) T(n-1)

=[n...2]@[1] =(e::es)@[1]
Tapp(n-1) Tapp (1)
‘ = e::(es@[1])

=[n...1]

Recurrences

If append has a constant cost of 1, then strict

evaluation results in quadratic time and lazy evaluation

results in linear time.

Strict Lazy
T(0)=0 T(0)=0

T(n)=T(n-1)+n-1

T(n)=T(n-1)+1



