
Recurrence Extraction from Lazy Programs

Introduction to Cost Analysis

Strict vs. Lazy Programming

Our Work

Goals Reverse

Strict Lazy

Future Work

‣ Gain intuitions surrounding the
clairvoyant call by value
approach to lazy cost analysis

‣ Extract cost recurrences from
lazy programs

‣ Develop tools that allow us to
track the evaluation and cost of
various programs

Caroline Churney, Norman Danner

‣ Coded parser and interpreter to
analyze the cost and operations of
programs

‣ Studied principles of lazy cost
analysis with guidance from Hackett
and Hutton’s work on clairvoyance

What is Clairvoyant Call by Value?

rev [1…n]
=rev[2…n]@[1]
T(n-1)
.
.
.
=(e::es)@[1]
Tapp (1)
= e::(es@[1])

fun rev xs =
 case xs of
 nil —> nil
 x’:xs’ —>
 let
 a’=rev xs’
 n=nil
 b’=x’:n
 in
 app a’ b’

fun app xs ys =
 case xs of
 nil —> ys
 x’:xs’ —>
 let
 a = app xs’ ys
 in
 x’:a

rev [1…n]
=rev[2…n]@[1]
T(n-1)
.
.
.
=[n…2]@[1]
Tapp (n-1)

.

.

.
=[n…1]

Recurrences

If append has a constant cost of 1, then strict
evaluation results in quadratic time and lazy evaluation
results in linear time.

Strict Lazy

T(0)=0
T(n)=T(n-1)+n-1

T(0)=0
T(n)=T(n-1)+1

‣ Cost: number of operations required
to obtain result of program

‣ Measure of the efficiency of a
program

Wesleyan University

‣ Strict: immediate evaluation
‣ Lazy: only evaluates if necessary for

the result of the program

‣ Extend Hackett and Hutton’s work in
order to formalize the recurrence
extraction process for lazy programs

‣ Adapt our interpreter to a lazy
language in order to track operations
and cost of more lazy programs

‣ Alternative model for lazy evaluation
‣ Utilizes the concept of

nondeterminism
‣ Interpreter makes choices during

execution depending on the
necessity of bindings for
evaluation of the program

‣ Results in derivation tree with
minimum cost or the “maximally lazy
computation cost”

For more information on Hackett and Hutton’s clairvoyant model:
Jennifer Hackett and Graham Hutton. 2019. Call-by-Need Is Clairvoyant
Call-by-Value. Proc. ACM Program. Lang. 3, ICFP, Article 114 (August
2019), 23 pages. https://doi.org/10.1145/3341718

