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Abstract: 
Our objectives were:
(1) to develop a deeper understanding of the three

branches of differential geometry, which are
Riemannian, Contact, and Symplectic;

(2) to study the applications of the theoretical concepts
to Physics and other mathematical areas.

No original results will be presented. We summarize the
material we studied.

Introduction: 
Geometry is a set with a structure tensor defined
on it. The structure tensor is a function, which is
defined differently in disparate branches. In
particular:
Riemannian geometry: a metric tensor
(associates a real number to a pair of tangent
vectors from a tangent space at each point)
which is symmetric and positive-definite; used to
define such concepts as length of a curve, angle,
distance, volume, etc.
Contact geometry: a contact form which is a
differential 1-form with stipulation that it is non-
degenerate; the contact distribution (kernel of
the contact form) is the central object of study.
Symplectic geometry: a symplectic form is a
differential 2-form satisfying the properties of
being non-degenerate and closed; the central
object of study is the symplectic form itself.

Summary of the two applications of Contact Geometry:
(1) To Physics: Huygen’s Principle describes the evolution of the wavefront, which in mathematical language is expressed as a
diffeomorphism (a map that “preserves structure”). The evolution of the wavefront has the property that a point q on the wavefront i gets
mapped to a point q’ on the wavefront i+1 such that the tangent line to the wavefront at q coincides with the tangent line at q’. To record the
information about the tangent line, the space of contact elements is introduced. It consists of points (x,y,z) in R^3 with the meaning of the
third coordinate changed, - it is the slope of a tangent line to the wavefront at a point (x,y). A diffeomorphism is then defined on the contact
space in which a wavefront is modelled.
(2) To Math: An ordinary differential equation (ODE) consists of an unknown function, its derivative, and an independent variable. The
solution to ODE is a function. We represent ODE as a function F in the contact space. The solution to it is identified with the zero level set of
F. Although this does not give an “easier” way to solve an ODE, the method is very powerful when applied to solving partial differential
equations in higher dimensions.

Reference: McInerney, A. (2013). First Steps in Differential Geometry: Riemannian, Contact, Symplectic (Undergraduate Texts in Mathematics). Springer.

Riemannian geometry generalizes the Euclidean geometry we are familiar with to other spaces, such as the surface of a sphere. The Riemannian
metric gives us a notion of distance between vectors. This allows us to define geometric properties we are already familiar with, such as length and
angle on more exotic spaces.
Geodesics:
In Euclidean space, the shortest path between any two points is always the straight line between them. To find shortest paths, or geodesics, in a
general Riemannian space, we find curves in the space whose tangent vectors don’t change with respect to the curve itself:▽_{c’} c' = 0 .
Curvature:
Applying geometry to more general spaces also gives rise to a notion of curvature. One variant, called sectional curvature, describes curvature per
unit area with respect to the metric. Euclidean space has 0 curvature. Curvature has geometric consequences on spaces, including on the shape of
triangles. The sphere and hyperbolic plane have constant sectional curvatures of 1 and -1 respectively.

 The sphere has positive 
curvature, so triangles can be 
formed with all right angles.

 The hyperbolic plane is 
negatively curved, so 
triangles can be formed 
with much smaller angles.

Riemannian Geometry:

Newtonian mechanics have the issue of second order systems of differential equations becoming very difficult to solve as the systems
become more complex. Hamiltonian mechanics seeks to amend this by recasting the problem in terms of momentum instead of in terms of
force. Given a hamiltonian function H, there is a unique vector field X_H defined i(X_H) w_0 = H, where w_0 is the standard symplectic form
on R^2. The integral curves of the vector field X_H give the solution to the system defined by the hamiltonian function H. The solution to H
then defines the motion of the system.

Application of Symplectic Geometry to Hamiltonian Mechanics:


