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The next steps in this project will be to complete the synthesis of the triphenylene diol and the bis(boronic) acid tetraphenylene. As the bis(boronic) acid 
tetraphenylene has no literature precedent, we anticipate having to workshop the conditions for the deamination and palladium cross coupling reactions. When 
the [3+3] hexagon is built, we plan on characterizing its properties, especially its florescence. We also plan on going back and improving synthetic yields.

We first tried a  Suzuki coupling reaction but even using multiple solvents, a phase catalyst 
and different periods of time, the yield was not ideal. We turned to a McMurry coupling 
reaction as a second option and received much better results. Although the yield was only 
17%, we believe a much higher yield can be achieved with a few changes to the work up and 
purification solvent systems. 
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Scheme 3: Failed Suzuki coupling reaction 
to form TPE-NH2

Scheme 4: Successful McMurry coupling 
reaction to form TPE-NH2 which is used to 
used to make (bis)boronic acid TPE.

Scheme 5: Synthetic steps for creation of 
triphenylene diol. 

Scheme 2: Retrosynthesis of [3+3] covalent organic hexagon 

Scheme 1: Boronate ester self assembly of twisted [3+3]  covalent organic hexagon  that 
is predicted to show florescent properties.
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Aggregation induced emitting luminogens (AIEs) are a new and exciting type of 
material being developed, having wide variety of uses, from environmental 
toxicity monitors to biomedical probes. Most luminescent molecules are highly
conjugated, which often results in them having planer geometries. Planer, π-
conjugated molecules π-stack which allows the molecules to dissipate energy 
vibrationally due to the decrease in the HOMO LUMO gap instead of dissipating 
energy photochemically. This phenomenon is called quenching. In contrast, 
AIEs do not fluoresce as single molecules or in low concentrations, but when 
many come together in high concentration, the result is a luminescent 
substance. AIEs characteristically have bulky 3-D geometries and extended π-
conjugation. When excited by light, they can thermally release energy by 
rotating or vibrating but when squished together in high concentrations, that 
movement is restricted so the only option to release energy is photochemical.

The Northrop lab has extensive experience using dynamic covalent boronate ester 
condensation to self-assemble π-conjugated nanoporous covalent organic polygons. To 
date, however, all these nanoporous polygons have been fluorescent in solution but 
undergo aggregation induced quenching that limits or prevents their fluorescence in 
condensed phases. This project aims to explore whether the use of AIE luminogens as 
components in boronate ester self-assembly will enable highly fluorescent nanoporous
covalent organic polygons to be prepared, with likely applications as sensors and optical 
materials.2 In order to answer this question, we first are working to find an efficient 
synthesis to make covalent organic hexagons. Successful boronate ester self-assembly 
will involve linking tetraphenylethylene bis(boronic acids), which are AIE luminogens, with 
π-conjugated triphenylene tetraols. This summer has been focused on the synthetic steps 
that will lead to these target molecules. 

Figure  1: Explanation for aggregate induced 
emission.1

Figure  4: Front and Side view of [3+3] 
covalent organic hexagon generated 
by Gaussian.
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Dynamic Covalent Chemistry: thermodynamically reversible covalent bond forming reactions
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Figure 3: 
Physisorption of 
gases is the 
noncovalent 
binding of 
different gases 
(H2, N2, CH4, 
CO2, SO2, etc.) 
to the interior 
walls of MOFs.
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Figure  2: Boronate ester dynamic covalent 
chemistry can lead to nanoporous frameworks 


