Students' Learning in First Year Physics Classes

Introduction

In introductory physics classes, students are given a conceptua evaluation prior to instruction and then again after. Researchers currently use "normalized gain" and "normalized change" to evaluate learning in these studies. Moreover, the quality of data collected due to these studies is not always clear.

We propose new metrics that assess how students' paired responses change from pre-test to post-test. These are an improvement on curren practices as we get to characterize how students confront their own misconceptions. We can also use these metrics to ascertain the "seriousness" of participants while taking the assessment, and thus we learn of the quality of the data.

How Do Students Answers Change?

compare students' pre-test and post-test responses and We characterize them according to the type of transition that occurred:

Pre-test Answer	Post-test Answer	Type of Transition
Right	Right	Right to Right (RR)
Right	Wrong	Right to Wrong (RW)
Wrong	Right	Wrong to Right (WR)
Wrong	Wrong (same as pre-test)	Wrong to Same Wrong (WSW)
	Wrong (different from pre-test)	Wrong to Different Wrong (WDW)

What is "Seriousness"?

Serious participants "chose answers with consideration, including educated and/or thoughtful guesses, throughout their entire assessment"³

- Low Q indicates seriousness
- High Q and a combination of other cutoffs using metrics indicates nonserious

Tofarati Folayan, Mohammad Hasib, Candice M. Etson, PhD

Department of Physics, Wesleyan University, CT 06459

Transition Metrics

Normalized Gain $G = \frac{WR - RW}{WDW + WSW + WR}$	Gain in final score normalized by maximum possible gain	Counterproductive Change C $= \frac{RW}{WDW + RW + WR}$	Fraction of a changed answers that changed from the changed from right to wron
Productive Change $P = \frac{WR}{WDW + RW + WR}$	Fraction of all changed answers that changed from wrong to right	$Shuffling$ S $= \frac{WDW}{WDW + RW + WR}$	Fraction of al changed answers that remained incorrect
Change Quotient $Q = \frac{RW + WR + WDW}{RR + WSW + RW + WR + WDW}$	Fraction of answers that changed from the pre-test to the post-test		

Determining the Thresholds

Productive Change vs Normalized Change Physics Electricity and Magnetism Physics E&M F2014 - TRAD - 133 Physics E&M W2021 - IE - 3322 $R^2 = 0.84$, p < 2.2e-16 $R^2 = 0.73$, p < 2.2e-16d from wrong Hake's Gair **Physics Mechanics** ics Mechanics F2013 - TRAD - 801 Physics Mechanics F2018 - IE - 1342 $R^2 = 0.64$, p < 2.2e-16R² = 0.87 , p < 2.2e-16 Y Intercept: 0.234 , Slope: 0.954 0.50 0.75 1.00 0.25 Hake's Gain Hake's Gain

Conclusions

We found that using the expected values for several metrics as thresholds allowed us to distinguished randomly generated data sets from real data sets. We also found a strong correlation between Productive Change and Normalized Change across other universities, suggesting that classes can be characterized by these correlations.

In further work, we will apply these thresholds to other institutional data and further analyze the effects each metric has on one another. We will conduct additional tests ensure that "serious" and "nonserious" populations are also accurately captured across any real data set.

References

- 1. Hake, R (1998). Interactive-engagement versus traditional methods A six thousand student survey of mechanics test data for introductory physics course. American Journal of Physics, 66(1), 64-74. doi: 10.1119/1.18809
- 2. Marx, J. D., & Cummings, K. (2007). Normalized change. American Journal of Physics, 75(1), 87. doi: 10.1119/1.2372468
- 3. Waters, D. P., Amarie, D., Booth, R. A., Conover, C., & Sayre, E. C. (2019). Investigating students' seriousness during selected conceptual inventory surveys. Physical Review. Physics Education Research, 15(2), 020118-. https://doi.org/10.1103/PhysRevPhysEducRes.15.020118

Acknowledgements

We would like to greatly thank Professor Etson for her guidance throughout this summer, and the Research in the Sciences program for their funding and continued support.

